
Thunder Documentation

Rohan Nagar, Nick Eckert

May 01, 2024

CONTENTS

1 Features 3
1.1 REST API for user object operations . 3
1.2 Multiple Database Providers . 3
1.3 Email Verification . 3
1.4 Server-Side Password Hashing . 3
1.5 Secrets Fetching . 4
1.6 Basic Authentication or OAuth 2.0 . 4
1.7 Additional User Properties . 4
1.8 Customizable Email Contents . 5
1.9 Customizable Verification Success Page . 5
1.10 Generated OpenAPI (Swagger) Specifications . 5
1.11 Official Docker Image . 5
1.12 Client Libraries . 5

2 Endpoints 7
2.1 Create User . 7
2.2 Update User . 8
2.3 Get User . 10
2.4 Delete User . 11
2.5 Send Verification Email . 13
2.6 Verify User . 14
2.7 Reset Verification Status . 15
2.8 Get Verification Success Page . 17

3 Configuration Options 19
3.1 Database . 19
3.2 Email . 20
3.3 Message Options . 21
3.4 Authentication . 21
3.5 Configuration Secrets . 22
3.6 User Password Hashing . 23
3.7 Property Validation . 24
3.8 Email Address Validation . 25
3.9 Operation Options . 26
3.10 OpenAPI . 26
3.11 Dropwizard Configuration . 27

4 User Attributes 29
4.1 Exposed Attributes . 29
4.2 Extra Attributes . 29

i

5 HTTPS Support 31
5.1 Quick Start . 31
5.2 Full Example . 31

6 Deployment 37
6.1 1. Create DynamoDB Table . 37
6.2 2. Configure SES . 37
6.3 3. Create a K8s Cluster . 38
6.4 4. Deploy Thunder . 39
6.5 5. Add Domain Record (Optional) . 40

7 Client Libraries 41
7.1 Java . 41
7.2 JavaScript (Node.js) . 42

HTTP Routing Table 43

ii

Thunder Documentation

Thunder is a REST API that interfaces with a DynamoDB database to provide an easy way to create, update, fetch, and
delete users. Thunder was originally built as part of the backend for a social media management application, but has
since evolved into a generic user management application. See the roadmap for more information on where Thunder
is headed.

This documentation holds information about how to use Thunder in your own applications. See the links on the sidebar
to read more.

Get started by following Deployment.

Keep up-to-date by viewing the changelog.

CONTENTS 1

https://github.com/RohanNagar/thunder/wiki/Changelog

Thunder Documentation

2 CONTENTS

CHAPTER

ONE

FEATURES

1.1 REST API for user object operations

At its core, Thunder is a REST API that provides endpoints to manage user accounts and information. Your frontend
application can use Thunder to create, retrieve, update, and delete user accounts. All of the user information is stored
in a database that Thunder interfaces with.

1.2 Multiple Database Providers

Thunder provides implementations for multiple database providers so that you can use the database of your choice.
Currently, Thunder supports Amazon DynamoDB and MongoDB, with support for additional providers coming in the
near future. See Database for more information on configuring a specific database provider.

1.3 Email Verification

Thunder provides functionality to send verification emails and keep email verification state. POST requests to /verify
will send a verification email with a verification URL. GET requests to /verify will mark the email address as verified.
Finally, applications can also reset the verification status of a user’s email address for any reason at /verify/reset.

Note: Thunder currently relies on Simple Email Service (SES) to send emails, so an AWS account is required if email
verification is enabled for your instance of Thunder.

1.4 Server-Side Password Hashing

Thunder can perform server-side password hashing of user passwords. By default in version 2.0+, Thunder will not
hash any user passwords. However, you can enable this in your configuration, and additionally specify the hashing
algorithm to be used. See User Password Hashing for more information on the configuration options.

3

Thunder Documentation

1.5 Secrets Fetching

Thunder is able to fetch values defined in your configuration file from a secrets provider. This is particularly useful
for configuration such as a MongoDB connection string, or the secret key used to validate HMAC-SHA signed JWT
tokens. See Configuration Secrets for more information.

1.6 Basic Authentication or OAuth 2.0

Thunder requires authentication from clients when making requests to the API. This authentication can be configured
to be either basic authentication (with a user-defined list of allowed username/password combinations), or OAuth 2.0
authentication. When using OAuth 2.0, you must have a separate service that will supply OAuth JWT tokens, which
clients will then send to Thunder in the Authorization header. Thunder will verify that the JWT tokens it receives are
valid and that they contain the right claims specified by the user in the configuration file. See Authentication for more
information.

1.7 Additional User Properties

Thunder always requires that your user objects contain an email address and a password. However, you can include any
additional number of properties in your user objects. By default, additional user properties are flexible and Thunder
will not perform any validation of these properties. For example, you can create two users like the following:

1.7.1 User 1

{
"email": "sampleuser@sanctionco.com",
"password": "hunter2",
"appId": 1234567890

}

1.7.2 User 2

{
"email": "seconduser@sanctionco.com",
"password": "hunter3",
"appId": 1234567890,
"additionalProperty": "So many properties!"

}

and Thunder will accept both.

You can also configure Thunder to perform validation on these properties to ensure that all users have the same prop-
erties and that they are the correct type (String, Integer, Double, etc). See Property Validation for more information on
the configuration options.

4 Chapter 1. Features

Thunder Documentation

1.8 Customizable Email Contents

The contents of verification emails can be completely customized. See Email for more information on the configuration
options.

1.9 Customizable Verification Success Page

The success page that is shown to the end-user when their email is successfully verified can be customized. See Email
for more information on the configuration options.

1.10 Generated OpenAPI (Swagger) Specifications

Thunder offers generated OpenAPI documentation that is available at the /openapi.yaml or /openapi.json end-
points. This generated documentation can be used to automatically generate client libraries that are supported by the
openapi-generator. Additionally, Thunder runs Swagger UI at the /swagger endpoint. You can use the UI to view all
of the available endpoints as well as to make requests against the API.

1.11 Official Docker Image

Thunder provides an official Docker image so that your instance of Thunder can be easily run in a container environment.
There is also documentation on how to run Thunder in Kubernetes.

1.12 Client Libraries

Thunder provides client libraries for easy communication between your application and your instance of Thunder. See
Client Libraries for more information on the client libraries.

1.8. Customizable Email Contents 5

https://swagger.io/docs/specification/about/
https://github.com/OpenAPITools/openapi-generator
https://hub.docker.com/r/rohannagar/thunder/

Thunder Documentation

6 Chapter 1. Features

CHAPTER

TWO

ENDPOINTS

2.1 Create User

POST /users

Creates a new user in the database.

Example:

http

POST /users HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=
Content-Type: application/json

{
"email" : {
"address" : "sampleuser@sanctionco.com"

},
"password" : "12345",
"myCustomProperty" : "Hello World"

}

curl

curl -i -X POST http://nohost/users -H "Content-Type: application/json" --data-raw '
→˓{"email": {"address": "sampleuser@sanctionco.com"}, "myCustomProperty": "Hello␣
→˓World", "password": "12345"}' --user admin:admin

wget

wget -S -O- http://nohost/users --header="Content-Type: application/json" --post-
→˓data='{"email": {"address": "sampleuser@sanctionco.com"}, "myCustomProperty":
→˓"Hello World", "password": "12345"}' --auth-no-challenge --user=admin --
→˓password=admin

httpie

echo '{
"email": {
"address": "sampleuser@sanctionco.com"

},
"myCustomProperty": "Hello World",

(continues on next page)

7

Thunder Documentation

(continued from previous page)

"password": "12345"
}' | http POST http://nohost/users Content-Type:application/json -a admin:admin

response

HTTP/1.1 201 CREATED
Content-Type: application/json

{
"email" : {
"address" : "sampleuser@sanctionco.com",
"verified" : false,
"verificationToken" : null

},
"password" : "12345",
"creationTime" : 1617152816,
"lastUpdateTime" : 1617152816,
"myCustomProperty" : "Hello World"

}

Request Headers

• Authorization – basic authentication application name and secret

Status Codes

• 201 Created – user was successfully created

• 400 Bad Request – the create request was malformed

• 409 Conflict – the user already exists in the database

• 500 Internal Server Error – the database rejected the request for an unknown reason

• 503 Service Unavailable – the database is currently unavailable

2.2 Update User

PUT /users

Updates an existing user in the database.

Example:

http

PUT /users?email=sampleuser%40sanctionco.com HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=
Content-Type: application/json
password: YWRtaW46YWRtaW4=

{
"email" : {
"address" : "newsampleuser@sanctionco.com",
"verified" : false,

(continues on next page)

8 Chapter 2. Endpoints

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

Thunder Documentation

(continued from previous page)

"verificationToken" : null
},
"password" : "12345",
"myCustomProperty" : "My properties have changed"

}

curl

curl -i -X PUT 'http://nohost/users?email=sampleuser%40sanctionco.com' -H "Content-
→˓Type: application/json" -H "Password: YWRtaW46YWRtaW4=" --data-raw '{"email": {
→˓"address": "newsampleuser@sanctionco.com", "verificationToken": null, "verified":␣
→˓false}, "myCustomProperty": "My properties have changed", "password": "12345"}' --
→˓user admin:admin

wget

wget -S -O- --method=PUT 'http://nohost/users?email=sampleuser%40sanctionco.com' --
→˓header="Content-Type: application/json" --header="Password: YWRtaW46YWRtaW4=" --
→˓body-data='{"email": {"address": "newsampleuser@sanctionco.com",
→˓"verificationToken": null, "verified": false}, "myCustomProperty": "My properties␣
→˓have changed", "password": "12345"}' --auth-no-challenge --user=admin --
→˓password=admin

httpie

echo '{
"email": {
"address": "newsampleuser@sanctionco.com",
"verificationToken": null,
"verified": false

},
"myCustomProperty": "My properties have changed",
"password": "12345"

}' | http PUT 'http://nohost/users?email=sampleuser%40sanctionco.com' Content-
→˓Type:application/json Password:YWRtaW46YWRtaW4= -a admin:admin

response

HTTP/1.1 200 OK
Content-Type: application/json

{
"email" : {
"address" : "newsampleuser@sanctionco.com",
"verified" : false,
"verificationToken" : null

},
"password" : "12345",
"creationTime" : 1617152816,
"lastUpdateTime" : 1617152850,
"myCustomProperty" : "My properties have changed"

}

2.2. Update User 9

Thunder Documentation

Query Parameters

• email – the existing email address of the user to update. This is optional, and only required
if the email is to be changed.

Request Headers

• Authorization – basic authentication application name and secret

• password – the (hashed) password of the user to update

Status Codes

• 200 OK – user was successfully updated

• 400 Bad Request – the update request was malformed

• 401 Unauthorized – the request was unauthorized

• 404 Not Found – the existing user to update was not found in the database

• 409 Conflict – a user with the new email already exists in the database

• 500 Internal Server Error – the database rejected the request for an unknown reason

• 503 Service Unavailable – the database is currently unavailable

2.3 Get User

GET /users

Retrieves a user from the database.

Example:

http

GET /users?email=sampleuser%40sanctionco.com HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=
Content-Type: application/json
password: YWRtaW46YWRtaW4=

curl

curl -i -X GET 'http://nohost/users?email=sampleuser%40sanctionco.com' -H "Content-
→˓Type: application/json" -H "Password: YWRtaW46YWRtaW4=" --user admin:admin

wget

wget -S -O- 'http://nohost/users?email=sampleuser%40sanctionco.com' --header=
→˓"Content-Type: application/json" --header="Password: YWRtaW46YWRtaW4=" --auth-no-
→˓challenge --user=admin --password=admin

httpie

http 'http://nohost/users?email=sampleuser%40sanctionco.com' Content-
→˓Type:application/json Password:YWRtaW46YWRtaW4= -a admin:admin

response

10 Chapter 2. Endpoints

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

Thunder Documentation

HTTP/1.1 200 OK
Content-Type: application/json

{
"email" : {
"address" : "sampleuser@sanctionco.com",
"verified" : false,
"verificationToken" : null

},
"password" : "12345",
"creationTime" : 1617152816,
"lastUpdateTime" : 1617152850,
"myCustomProperty" : "Hello World"

}

Query Parameters

• email – the email address of the user

Request Headers

• Authorization – basic authentication application name and secret

• password – the (hashed) password of the user

Status Codes

• 200 OK – the operation was successful

• 400 Bad Request – the get request was malformed

• 401 Unauthorized – the request was unauthorized

• 404 Not Found – the user was not found in the database

• 503 Service Unavailable – the database is currently unavailable

2.4 Delete User

DELETE /users

Deletes a user from the database.

Example:

http

DELETE /users?email=sampleuser%40sanctionco.com HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=
Content-Type: application/json
password: YWRtaW46YWRtaW4=

curl

curl -i -X DELETE 'http://nohost/users?email=sampleuser%40sanctionco.com' -H
→˓"Content-Type: application/json" -H "Password: YWRtaW46YWRtaW4=" --user␣
→˓admin:admin

2.4. Delete User 11

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

Thunder Documentation

wget

wget -S -O- --method=DELETE 'http://nohost/users?email=sampleuser%40sanctionco.com'␣
→˓--header="Content-Type: application/json" --header="Password: YWRtaW46YWRtaW4=" --
→˓auth-no-challenge --user=admin --password=admin

httpie

http DELETE 'http://nohost/users?email=sampleuser%40sanctionco.com' Content-
→˓Type:application/json Password:YWRtaW46YWRtaW4= -a admin:admin

response

HTTP/1.1 200 OK
Content-Type: application/json

{
"email" : {
"address" : "sampleuser@sanctionco.com",
"verified" : false,
"verificationToken" : null

},
"password" : "12345",
"creationTime" : 1617152816,
"lastUpdateTime" : 1617152850,
"myCustomProperty" : "Hello World"

}

Query Parameters

• email – the email address of the user

Request Headers

• Authorization – basic authentication application name and secret

• password – the (hashed) password of the user

Status Codes

• 200 OK – the operation was successful

• 400 Bad Request – the delete request was malformed

• 401 Unauthorized – the request was unauthorized

• 404 Not Found – the user was not found in the database

• 503 Service Unavailable – the database is currently unavailable

12 Chapter 2. Endpoints

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

Thunder Documentation

2.5 Send Verification Email

POST /verify

Initiates the user verification process by sending a verification email to the email address provided as a query
parameter. The user in the database will be updated to include a unique verification token that is sent along with
the email.

Example:

http

POST /verify?email=sampleuser%40sanctionco.com HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=
Content-Type: application/json
password: YWRtaW46YWRtaW4=

curl

curl -i -X POST 'http://nohost/verify?email=sampleuser%40sanctionco.com' -H
→˓"Content-Type: application/json" -H "Password: YWRtaW46YWRtaW4=" --user␣
→˓admin:admin

wget

wget -S -O- 'http://nohost/verify?email=sampleuser%40sanctionco.com' --header=
→˓"Content-Type: application/json" --header="Password: YWRtaW46YWRtaW4=" --auth-no-
→˓challenge --user=admin --password=admin

httpie

http POST 'http://nohost/verify?email=sampleuser%40sanctionco.com' Content-
→˓Type:application/json Password:YWRtaW46YWRtaW4= -a admin:admin

response

HTTP/1.1 200 OK
Content-Type: application/json

{
"email" : {
"address" : "sampleuser@sanctionco.com",
"verified" : false,
"verificationToken" : "0a4b81f3-0756-468e-8d98-7199eaab2ab8"

},
"password" : "12345",
"creationTime" : 1617152816,
"lastUpdateTime" : 1617152850,
"myCustomProperty" : "Hello World"

}

Query Parameters

• email – the email address of the user

Request Headers

2.5. Send Verification Email 13

Thunder Documentation

• Authorization – basic authentication application name and secret

• password – the (hashed) password of the user

Status Codes

• 200 OK – the operation was successful

• 400 Bad Request – the send email request was malformed

• 401 Unauthorized – the request was unauthorized

• 404 Not Found – the user to email was not found in the database

• 500 Internal Server Error – the database rejected the request for an unknown reason

• 503 Service Unavailable – the database is currently unavailable

2.6 Verify User

GET /verify

Used to verify a user email. Typically, the user will click on this link in their email to verify their account. Upon
verification, the user object in the database will be updated to indicate that the email address is verified.

Example:

http

GET /verify?email=sampleuser%40sanctionco.com&token=0a4b81f3-0756-468e-8d98-
→˓7199eaab2ab8&response_type=json HTTP/1.1
Content-Type: application/json

curl

curl -i -X GET 'http://nohost/verify?email=sampleuser%40sanctionco.com&
→˓token=0a4b81f3-0756-468e-8d98-7199eaab2ab8&response_type=json' -H "Content-Type:␣
→˓application/json"

wget

wget -S -O- 'http://nohost/verify?email=sampleuser%40sanctionco.com&token=0a4b81f3-
→˓0756-468e-8d98-7199eaab2ab8&response_type=json' --header="Content-Type:␣
→˓application/json"

httpie

http 'http://nohost/verify?email=sampleuser%40sanctionco.com&token=0a4b81f3-0756-
→˓468e-8d98-7199eaab2ab8&response_type=json' Content-Type:application/json

response

HTTP/1.1 200 OK
Content-Type: application/json

{
"email" : {
"address" : "sampleuser@sanctionco.com",

(continues on next page)

14 Chapter 2. Endpoints

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

Thunder Documentation

(continued from previous page)

"verified" : true,
"verificationToken" : "0a4b81f3-0756-468e-8d98-7199eaab2ab8"

},
"password" : "12345",
"creationTime" : 1617152816,
"lastUpdateTime" : 1617152850,
"myCustomProperty" : "Hello World"

}

Query Parameters

• email – the email address of the user

• token – the verification token from the email that was associated with the user

• response_type – the optional response type, either HTML or JSON. If HTML is specified,
the URL will redirect to /verify/success. The default response_type is JSON.

Status Codes

• 200 OK – the operation was successful and JSON was returned

• 303 See Other – the request is redirecting to /verify/success

• 400 Bad Request – the verify request was malformed

• 404 Not Found – the user to verify was not found in the database

• 500 Internal Server Error – the request failed for a potentially unknown reason

• 503 Service Unavailable – the database is currently unavailable

2.7 Reset Verification Status

POST /verify/reset

Resets the verification status of the user’s email to false.

Example:

http

POST /verify/reset?email=sampleuser%40sanctionco.com HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=
Content-Type: application/json
password: YWRtaW46YWRtaW4=

curl

curl -i -X POST 'http://nohost/verify/reset?email=sampleuser%40sanctionco.com' -H
→˓"Content-Type: application/json" -H "Password: YWRtaW46YWRtaW4=" --user␣
→˓admin:admin

wget

2.7. Reset Verification Status 15

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

Thunder Documentation

wget -S -O- 'http://nohost/verify/reset?email=sampleuser%40sanctionco.com' --header=
→˓"Content-Type: application/json" --header="Password: YWRtaW46YWRtaW4=" --auth-no-
→˓challenge --user=admin --password=admin

httpie

http POST 'http://nohost/verify/reset?email=sampleuser%40sanctionco.com' Content-
→˓Type:application/json Password:YWRtaW46YWRtaW4= -a admin:admin

response

HTTP/1.1 200 OK
Content-Type: application/json

{
"email" : {
"address" : "sampleuser@sanctionco.com",
"verified" : false,
"verificationToken" : null

},
"password" : "12345",
"creationTime" : 1617152816,
"lastUpdateTime" : 1617152850,
"myCustomProperty" : "Hello World"

}

Query Parameters

• email – the email address of the user

Request Headers

• Authorization – basic authentication application name and secret

• password – the (hashed) password of the user

Status Codes

• 200 OK – the operation was successful

• 400 Bad Request – the reset request was malformed

• 401 Unauthorized – the request was unauthorized

• 404 Not Found – the user to reset was not found in the database

• 500 Internal Server Error – the database rejected the request for an unknown reason

• 503 Service Unavailable – the database is currently unavailable

16 Chapter 2. Endpoints

https://www.rfc-editor.org/rfc/rfc7235#section-4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4

Thunder Documentation

2.8 Get Verification Success Page

GET /verify/success

Returns an HTML success page that is shown after a user successfully verifies their account. GET /verify will
redirect to this URL if the response_type query parameter is set to html.

Example:

http

GET /verify/success HTTP/1.1
Content-Type: text/html

curl

curl -i -X GET http://nohost/verify/success -H "Content-Type: text/html"

wget

wget -S -O- http://nohost/verify/success --header="Content-Type: text/html"

httpie

http http://nohost/verify/success Content-Type:text/html

response

HTTP/1.1 200 OK
Content-Type: text/html

<!DOCTYPE html>
<html>
<div class="alert alert-success">
<div align="center">Success!
Your account has been verified.

→˓</div>
</div>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/

→˓bootstrap.min.css" />
</html>

Status Codes

• 200 OK – the operation was successful

2.8. Get Verification Success Page 17

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1

Thunder Documentation

18 Chapter 2. Endpoints

CHAPTER

THREE

CONFIGURATION OPTIONS

Thunder is highly configurable to fit your needs. This page serves as an extensive guide to what configuration options
are available. If something that you wanted to configure is not available, open an issue to let us know!

3.1 Database

This configuration object is REQUIRED. Use the type option within the database configuration in order to select
the type of database that you are using. The remaining configuration options will change depending on the value of
type. See DynamoDB, In-Memory, and MongoDB below.

database:
type: [dynamodb/memory/mongodb]

Name Default Description
type REQUIRED The database type to connect to. One of dynamodb, memory, or mongodb.

3.1.1 DynamoDB

database:
type: dynamodb
endpoint:
region:
tableName:

Name Default Description
endpoint REQUIRED The endpoint used to access DynamoDB.
region REQUIRED The AWS region that the DynamoDB table exists in.
tableName REQUIRED The name of the DynamoDB table.

19

Thunder Documentation

3.1.2 In-Memory

Please note that while memory is an option to enable the use of an in-memory database, this configuration should NOT
be used in production as data loss can easily occur.

database:
type: memory
maxMemoryPercentage:

Name De-
fault

Description

maxMemo-
ryPercentage

75 The maximum amount of JVM memory that can be in use. If the amount of used memory
goes above this percentage, then POST requests to Thunder will begin to fail.

3.1.3 MongoDB

database:
type: mongodb
connectionString:
databaseName:
collectionName:

Name Default Description
connectionString REQUIRED The connection string used to access MongoDB.
databaseName REQUIRED The name of the database within the MongoDB instance.
collectionName REQUIRED The name collection (table) within the database.

3.2 Email

The email verification feature of Thunder allows you to ensure user email addresses actually belong to them. By
performing a POST on the /verify endpoint, an email will be sent to the address of the specified user. The contents of
this email can be customized through the Message Options configuration. If no custom contents are used, the default
contents are included in the application and can be found on Github.

email:
type: [none|ses]
endpoint:
region:
fromAddress:
messageOptions:
subject:
bodyHtmlFilePath:
bodyTextFilePath:
urlPlaceholderString:
successHtmlFilePath:

20 Chapter 3. Configuration Options

https://github.com/RohanNagar/thunder/tree/master/application/src/main/resources

Thunder Documentation

Name Default Description
type none The type of email provider to use for verification. Currently, ses is the only avail-

able provider. Use none to disable email verification.
endpoint REQUIRED IF

ENABLED
The endpoint used to access Amazon SES.

region REQUIRED IF
ENABLED

The AWS region to use SES in.

fromAd-
dress

REQUIRED IF
ENABLED

The address to send emails from.

mes-
sageOp-
tions

null See Message Options below. If null, default options are used.

3.3 Message Options

messageOptions:
subject:
bodyHtmlFilePath:
bodyTextFilePath:
urlPlaceholderString:
successHtmlFilePath:

Name Default Description
subject “Account

Verification”
The subject line for the email to be sent.

bodyHtml-
FilePath

null The path to the HTML to include in the verification email body. If null, then a
default body is used.

body-
TextFilePath

null The path to the text to include in the verification email body. If null, then a default
body is used.

urlPlace-
holder-
String

CODEGEN-
URL

The string contained in the body files that should be replaced with a per-user account
verification URL.

suc-
cessHtml

null The path to the HTML page to show users when they have successfully verified their
email address. If null, then a default page is shown.

3.4 Authentication

This is a required configuration block to define the authentication mechanism that clients will use to make API calls
to your Thunder instance. Both Basic Auth and OAuth 2.0 are supported types of authentication. If this configuration
section is not specified, then Thunder will not allow access to any requests. You should specify at least one key that
has access to the API (if using basic auth), or set up OAuth.

auth:
type: [basic|oauth]
Only use for basic auth
keys:

(continues on next page)

3.3. Message Options 21

Thunder Documentation

(continued from previous page)

- application:
secret:

- application:
secret:

Only use for OAuth
hmacSecret:
rsaPublicKeyFilePath:
issuer:
audience:

Name De-
fault

Description

type basic The type of authentication that Thunder should use. Either basic or oauth.
keys EMPTY The list of approved keys for basic auth API access. Each key has two properties: application

(the basic authentication username) and secret (the basic authentication password). Both prop-
erties on the key are required.

hmac-
Secret

null The secret used to sign/verify JWT tokens signed with the HMAC family of algorithms. It is rec-
ommended to store this value in a secrets provider and reference it as described in Configuration
Secrets. Either this or rsaPublicKeyFilePath must be present.

rsa-
Pub-
licK-
ey-
FilePath

null The path to a file containing the RSA public key used to verify JWT tokens signed with
the RSA family of algorithms. The file must be in .der format, which can be gener-
ated with openssl: openssl rsa -in private_key.pem -pubout -outform DER -out
public_key.der. Either this or hmacSecret must be present.

issuer RE-
QUIRED
for
oauth

The issuer of JWT tokens. Will be used in JWT token validation.

audi-
ence

none The audience to use when validation JWT tokens. If left empty, no audience will be required on
JWT tokens.

3.5 Configuration Secrets

This configuration object is OPTIONAL.

If you want to keep specific configuration values in your configuration file a secret, you can have Thunder read values
of keys from a supported secrets provider. To have Thunder read a secret, use the ${...} notation, where ... is the
name of the secret stored in your secrets provider.

To configure your secrets provider, use the following configuration:

secrets:
provider: [env|secretsmanager]

Name De-
fault

Description

providerenv The provider that is storing your secrets. Use env to read secrets from local environment variables.
Use secretsmanager to read secrets from AWS Secrets Manager. See AWS Secrets Manager below.

22 Chapter 3. Configuration Options

Thunder Documentation

3.5.1 AWS Secrets Manager

secrets:
provider: secretsmanager
endpoint:
region:
retryDelaySeconds:
maxRetries:

Name Default Description
endpoint RE-

QUIRED
The endpoint used to access Secrets Manager.

region RE-
QUIRED

The AWS region that the Secrets Manager endpoint is in.

retryDelay-
Seconds

1 The amount of time to wait between retries if there is an error connecting to Secrets
Manager.

maxRetries 0 The maximum amount of times to retry looking up a secret from Secrets Manager if
there is an error connecting to Secrets Manager.

3.6 User Password Hashing

This configuration object is OPTIONAL.

This group of options allows you to configure the hashing algorithm used by Thunder for server-side hashing of user
passwords, as well as the algorithm used to check the password value in the request header.

passwordHash:
algorithm:
serverSideHash:
headerCheck:
allowCommonMistakes:

3.6. User Password Hashing 23

Thunder Documentation

Name Default Description
algorithm simple The algorithm to use for server

side hashing and password compari-
son. Supported values are: simple,
sha256, bcrypt, and argon.

serverSideHash false Whether or not to enable server side
hashing. When enabled, a new user
or updated password will be hashed
within Thunder before being stored
in the database.

headerCheck true Whether or not to enable password
header checks. When enabled, the
password header is required on
GET, PUT, DELETE calls to /users,
POST calls to /verify, and POST
calls to /verify/reset. When dis-
abled, this header is not required.

allowCommonMistakes false Whether or not to allow the user
to have common password mistakes.
When enabled, if the user provides
a password with any of the follow-
ing common mistakes, the password
will still be accepted as valid:

1. The user inserted a random
character before or after

2. The user accidentally capital-
ized (or did not capitalize) the
first letter

3. The user mistakenly used caps
lock

3.7 Property Validation

This configuration object is OPTIONAL.

This configuration contains a list of additional user properties to be validated on POST or PUT calls to /users. The
default is no validation if properties is not defined.

For each property, new and updated users will be validated to ensure their properties map includes a property with
that name and type.

Additionally, there are two options to change the behavior of property validation, allowSubset and allowSuperset.

allowSubset allows a user’s properties to be a subset of the defined allowed properties.

allowSuperset allows a user’s properties to be a superset of the defined allowed properties.

This leads to 4 scenarios:

1. Both true. Users can have extra fields than those specified, or less than those specified, but the ones that are present
and specified will be checked to make sure they are the correct type.

24 Chapter 3. Configuration Options

Thunder Documentation

2. allowSuperset true and allowSubset false. Users can have extra fields than those specified, but no less than
those specified.

3. allowSuperset false and allowSubset true. Users can not have extra fields, but they can have less. All properties
must be in the list of specified properties.

4. Both false. Users can not have extra fields or less than those specified. All specified fields must exist and be correct,
and no more.

properties:
allowSubset:
allowSuperset:
allowed:

- name:
type:

- name:
type:

Name Default Description
al-
low-
Sub-
set

true Allows a user’s properties to be a subset of the defined allowed properties.

al-
low-
Su-
per-
set

true Allows a user’s properties to be a superset of the defined allowed properties.

al-
lowed

Empty list The list of additional user properties to validate on POST or PUT requests.

name REQUIRED
PER AL-
LOWED
RULE

The name of the property.

type REQUIRED
PER AL-
LOWED
RULE

The type of the property. Supported types are: string, integer, double, boolean,
list, and map. Any other type defined is treated as Object, meaning any object type will
be allowed. Use object if you don’t want to enforce a specific type for this property.

3.8 Email Address Validation

This configuration object is OPTIONAL.

By default, Thunder validates email addresses of new users with basic email validation. However, you can add addi-
tional custom rules that are used as part of validation.

rules:
- check: [startswith/endswith/contains/doesnotcontain]
value:

- check: [startswith/endswith/contains/doesnotcontain]
value:

3.8. Email Address Validation 25

Thunder Documentation

NameDe-
fault

Description

rules none A list of rules to use when validating an email address. Each rule has two properties: check and
value. For each rule, both properties are required. The types of checks available are currently
startswith, endswith, contains, and doesnotcontain. The value should be the value you want
to check against. For example, if you want to make sure that email addresses end with a specific do-
main test.com, you would use endswith as the check and test.com as the value.

3.9 Operation Options

This configuration object is OPTIONAL.

This contains configuration options for individual requests made to Thunder.

options:
operationTimeout:

Name Default Description
operationTimeout 30s Set the timeout for each Thunder operation.

3.10 OpenAPI

This configuration object is OPTIONAL.

This contains configuration options for the OpenAPI and Swagger UI. Swagger UI is enabled by default, however you
can disable it through the enabled option. There are also additional options related to the metadata of the generated
OpenAPI.

openApi:
enabled:
title:
version:
description:
contact:
contactEmail:
license:
licenseUrl:

26 Chapter 3. Configuration Options

Thunder Documentation

Name Default Description
enabled true Whether or not to enable OpenAPI generation

and Swagger UI.
title Thunder API The title of the Swagger page.
version Current version The version of the application.
descrip-
tion

A fully customizable user management REST API The description of the application.

contact null The name of the contact person for the applica-
tion.

con-
tactEmail

null The email of the contact person for the applica-
tion.

license MIT The name of the license for the application.
li-
censeUrl

https://github.com/RohanNagar/ thun-
der/blob/master/LICENSE.md

The URL of the license for the application.

3.11 Dropwizard Configuration

In addition to the configuration options above, Dropwizard provides certain configuration options. Those can be seen
here.

3.11. Dropwizard Configuration 27

https://github.com/RohanNagar/
http://www.dropwizard.io/1.3.1/docs/manual/configuration.html

Thunder Documentation

28 Chapter 3. Configuration Options

CHAPTER

FOUR

USER ATTRIBUTES

4.1 Exposed Attributes

• email The email for the user, represented as a string. This is always required, as it is the unique identifier for a
user.

• password The user’s password as a string. This is always required, and will be stored as a hashed version of the
actual password.

• creationTime A long representing the time in epoch milliseconds that this user was created in the database.

• lastUpdateTime A long representing the time in epoch milliseconds that this user was last updated in the
database.

• propertiesA map of additional user properties. These can be anything you wish, using a String as the identifier
and any object type as the value. Properties can be validated on POST /PUT by enabling Property Validation.

4.2 Extra Attributes

In addition, Thunder stores metadata informational attributes about each user. These are stored in the database but are
not exposed through the API at this time.

• id A unique identifier for the user. This will be created when the new user is created, and never updated after
that.

• version A unique string that determines the current version of the user. This is used to verify updates to a user,
in the case where two updates to the same user happen simultaneously.

29

Thunder Documentation

30 Chapter 4. User Attributes

CHAPTER

FIVE

HTTPS SUPPORT

Hyper Text Transport Protocol Secure (HTTPS) allows the encryption of traffic between Thunder and its client con-
nections. SanctionCo highly recommends that you secure your traffic since unencrypted traffic exposes sensitive data
to potential attackers.

There are two primary concerns when connecting to a Thunder instance:

1. Is my data confidential?

2. Is this Thunder instance trustworthy?

Thankfully both of these concerns are addressable using Transport Layer Security (TLS) as an underlying protocol to
the existing HTTP protocol.

TLS allows the encryption of traffic between Thunder and its clients using any number of specific cipher algorithms,
and allows the validation of a servers ownership using trust chaining.

5.1 Quick Start

If you don’t want to create your own CA for testing you can always use the default one in the thunder config/ directory.
The default java key store is called dev-server.jks and is already defined in the dev config file. The only action you
need to take it to import the ca-chain.cert.pem file also located in the config/ directory. Once imported you need
to trust the certificate and you you’ll be ready to test your HTTPS functionality!

5.2 Full Example

This short tutorial will walk you through the steps needed to secure your Thunder instances using your own self signed
root certificate.

Note: This should only be used for development and testing. In production it is highly recommended that you purchase
a signed certificate from a common CA or use a well established key management system through any number of
available cloud services. There are many steps not covered in this tutorial that are crucial to the long term success and
security of a key management system.

31

Thunder Documentation

5.2.1 Step 1: Create a self signed root CA certificate

The root CA will act as your identity. Users will have a copy of your root CA certificate and will use this when verifying
the authenticity of a Thunder instance. While the public key is known by anyone, it is crucial that you keep the private
key safe (preferably offline).

This command will create your root CA certificate and it’s corresponding private key both in PEM format.

$ openssl req -x509 -new -out rootCA.crt -config openssl_ca.cnf

5.2.2 Step 2: Create a server certificate

The server certificate is what a specific Thunder instance uses to encrypt traffic to a connected user. Both the private
and public keys are stored on the server to make this possible.

This command will create a certificate sign request (CSR) containing your servers public key. We will sign this key
with the rootCA’s private key and output a new certificate containing the servers private key and a signature from the
root CA. The config file also defines the key length for generating a private key and where to write it to.

$ openssl req -new -out server.csr -config openssl.cnf

5.2.3 Step 3: Sign the server certificate with the root CA certificate

Signing the server certificate with our root CA certificate allows a user with our trusted root CA certificate to validate
any specific Thunder certificate as trusted since the root CA signed it.

Note: Signing a CSR with extension fields does NOT copy the fields to the resulting certificate. For this you have to
specify the extensions in the command line directly as shown in the below command.

$ openssl x509 -req -in server.csr -CA rootCA.crt -CAkey rootCA.key -CAcreateserial -out␣
→˓server.crt -days 500 -sha256 -extfile openssl.cnf -extensions v3_req

5.2.4 Step 4: Convert server certificate and private key to PKCS#12 format

The java keystore (jks) follows the pkcs#12 standard for storing and managing public certificates and private keys.
This means we need to convert our public certificate and private key into a pkcs12 file so the java keystore and import
and use our certificates.

$ openssl pkcs12 -export -in server.crt -inkey server.key -out server.p12 -CAfile rootCA.
→˓crt

This command takes in our server cert and private key, then takes in the CA certificate that signed it to create a complete
certificate chain. If we had CA’s further up the chain we would include them too.

32 Chapter 5. HTTPS Support

Thunder Documentation

5.2.5 Step 5: Load the server certificate into the Java keystore

The keystore allows Dropwizard to recognize our keys and encrypt our traffic / prove our identity to users. The entire
certificate chain from the root CA’s certificate to the servers certificate needs to be included. This is because a user
should be able to confirm the root of trust as your CA certificate no matter how many intermediate CA’s and server
certificates exist.

$ keytool -importkeystore -deststorepass password -destkeypass password -destkeystore␣
→˓server.jks \
-srckeystore server.p12 -srcstoretype PKCS12 -srcstorepass password

Make sure you use the password for the java key store you created in step 3 for the srcstorepass flag. The
destkeypass is the password for the java keystore you are creating.

5.2.6 Step 6: Add fields to Dropwizard configuration file

Next we need to give Dropwizard the path to our keystore so it can encrypt our traffic. keyStorePath and
keyStorePassword will specify the path and password of the keystore created in step 5. validateCerts and
validatePeers are included as false to clarify that peers and clients will not require a certificate themselves for
validation. Here is an example config.yaml used for Thunder’s development environment:

Information to access DynamoDB
database:
endpoint: http://localhost:4567
region: us-east-1
tableName: pilot-users-test

Information to access SES
email:
endpoint: http://localhost:9001
region: us-east-1
fromAddress: noreply@sanctionco.com

Approved Application Authentication Credentials
approvedKeys:
- application: application
secret: secret

Server configuration
server:
applicationConnectors:
- type: http
port: 8080

- type: https
port: 8443
keyStorePath: ./config/server.jks
keyStorePassword: password
validateCerts: false
validatePeers: false

adminConnectors:
- type: http
port: 8081

(continues on next page)

5.2. Full Example 33

Thunder Documentation

(continued from previous page)

- type: https
port: 8444
keyStorePath: ./config/server.jks
keyStorePassword: password
validateCerts: false
validatePeers: false

5.2.7 Step 7: Load the root CA certificate into your local certificate store

We need to load the root CA’s certificate onto our computers local certificate store and mark it as trustworthy. Most
common CA certificates are already on your computer when you purchase the operating system. This usually means
you can connect to most websites without trouble since they will have signed a certificate with a common CA. Our CA
is anything but common so we have to take this extra step for our connection can be trusted.

On MacOS open keychain access and do file > import items then navigate to your public rootCA.crt certificate. Or:

$ sudo security add-trusted-cert -d -r trustRoot -k /Library/Keychains/System.keychain ~/
→˓rootCA.crt

To remove:

$ sudo security delete-certificate -c "<name of existing certificate>"

On Linux (Ubuntu):

$ sudo cp rootCA.crt /usr/local/share/ca-certificates/rootCA.crt
$ sudo update-ca-certificates

To remove:

$ sudo rm /usr/local/share/ca-certificates/rootCA.crt
$ sudo update-ca-certificates --fresh

5.2.8 Example certificate configuration files

Openssl CA config

This file is used to create a CA certificate and private key for Sanction development.

[req]
default_bits = 4096
distinguished_name = req_distinguished_name
default_keyfile = rootCA.key
prompt = no
encrypt_key = no
default_md = sha256
x509_extensions = v3_ca

[req_distinguished_name]
countryName = "US"
stateOrProvinceName = "Texas"

(continues on next page)

34 Chapter 5. HTTPS Support

Thunder Documentation

(continued from previous page)

localityName = "Austin"
organizationName = "Sanction"
organizationalUnitName = "Sanction Development CA"
commonName = "sanctionco.com"

[v3_ca]
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer
basicConstraints = critical, CA:true
keyUsage = critical, digitalSignature, cRLSign, keyCertSign

Openssl server config

This file is used to create a CSR for signing with the Sanction development CA.

[req]
default_bits = 2048
default_md = sha256
default_keyfile = server.key
prompt = no
encrypt_key = no
distinguished_name = req_distinguished_name
req_extensions = v3_req

[req_distinguished_name]
countryName = "US"
stateOrProvinceName = "Texas"
localityName = "Austin"
organizationName = "Sanction"
organizationalUnitName = "Development"
commonName = "sanctionco.com"

[v3_req]
subjectAltName = DNS:www.sanctionco.com,DNS:sanctionco.com,DNS:localhost

5.2. Full Example 35

Thunder Documentation

36 Chapter 5. HTTPS Support

CHAPTER

SIX

DEPLOYMENT

Currently, deploying Thunder requires an AWS account. You will need to create a DynamoDB Table and set up SES
(Simple Email Service) for an email address that you will send verification emails from. After that is set up, you can
create a Kubernetes cluster on any cloud provider and deploy Thunder to that cluster.

In the coming releases, Thunder will include more options for database providers, which will lessen the AWS require-
ment.

6.1 1. Create DynamoDB Table

To create a DynamoDB table, use the template in scripts/aws/dynamo-table.yaml and deploy that template to
AWS using CloudFormation. Use the desired table name as the TableName parameter to the template.

6.2 2. Configure SES

Note: This step is only required if you want to have email verification enabled on your Thunder instance (which is the
default). If you want to skip this and disable email verification, set the following configuration option:

email:
enabled: false

Set up SES using the instructions in the AWS console. If you want to send email from a domain that you own, follow
these steps:

1. Choose the “Verify a Domain” option from the SES portal. This will provide you with a DNS verification
record set. The set includes:

• Record Name: Used by SES to validate that you own the domain.

• Alternate Domain Verification Record: Optional, not necessary.

• MX Record: This is used when receiving emails. This can only send to one SMTP server so you can’t
have multiple MX records and expect the emails to be sent to all of them.

• DKIM Record Set: This is keys used to sign emails sent from a domain. They’re stored directly in the
DNS as records. This is optional as well.

2. Update your domain records with your domain registrar to include the new Record Name TXT record.

3. Once you receive an email from AWS saying that your email was verified, you should be set up to send emails
from SES.

37

Thunder Documentation

6.3 3. Create a K8s Cluster

Create a cluster using Google Kubernetes Engine (GKE), AWS Elastic Container Service (EKS), or Azure Container
Service (AKS). Connect to this cluster with kubectl.

If you need help creating the cluster, see the following subsections.

6.3.1 Azure Kubernetes Services (AKS)

Get the Azure CLI

macOS:

$ brew install azure-cli

Linux:

$ AZ_REPO=$(lsb_release -cs)
$ echo "deb [arch=amd64] https://packages.microsoft.com/repos/azure-cli/ $AZ_REPO main"␣
→˓| \

sudo tee /etc/apt/sources.list.d/azure-cli.list
$ sudo apt-key adv --keyserver packages.microsoft.com --recv-keys␣
→˓52E16F86FEE04B979B07E28DB02C46DF417A0893
$ curl -L https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add -
$ sudo apt-get install apt-transport-https
$ sudo apt-get update && sudo apt-get install azure-cli

Login to Azure

$ az login

Create a Resource Group

$ az group create --name thunder --location eastus

Register Resource Providers

If not already done, make sure you have the necessary resource providers registered.

$ az provider register -n Microsoft.Network
$ az provider register -n Microsoft.Storage
$ az provider register -n Microsoft.Compute
$ az provider register -n Microsoft.ContainerService

38 Chapter 6. Deployment

Thunder Documentation

Create AKS Cluster and Connect

$ az aks create --resource-group thunder --name thunder --node-count 1 --generate-ssh-
→˓keys --kubernetes-version 1.14.6 --node-vm-size Standard_B4ms

$ az aks get-credentials --resource-group thunder --name thunder

Verify that you are connected
$ kubectl get nodes

6.4 4. Deploy Thunder

Use the Helm chart to deploy Thunder to your Kubernetes cluster.

Make sure Helm is set up locally and install Tiller in the cluster
$ helm init

Edit the values.yaml file to set the configuration. Then, install the chart.

$ helm install --name thunder scripts/deploy/helm/thunder

If you have the following error:

Error: release thunder failed: namespaces "default" is forbidden: User
→˓"system:serviceaccount:kube-system:default" cannot get resource
"namespaces" in API group "" in the namespace "default"

Then run the following commands and try again:

$ kubectl create serviceaccount --namespace kube-system tiller
$ kubectl create clusterrolebinding tiller-cluster-rule --clusterrole=cluster-admin --
→˓serviceaccount=kube-system:tiller
$ kubectl patch deploy --namespace kube-system tiller-deploy -p '{"spec":{"template":{
→˓"spec":{"serviceAccount":"tiller"}}}}'

After installing the Helm chart, wait a few minutes for the load balancer to come up. Once it’s up, you’ll have an IP to
use!

$ export SERVICE_IP=$(kubectl get svc --namespace default thunder -o jsonpath='{.status.
→˓loadBalancer.ingress[0].ip}')
$ echo http://$SERVICE_IP:80

6.4. 4. Deploy Thunder 39

https://github.com/RohanNagar/thunder/tree/master/scripts/deploy/helm/thunder

Thunder Documentation

6.5 5. Add Domain Record (Optional)

If you have a custom domain name that you own, and you want to point it to your running instance of Thunder, find the
IP address of your Load Balancer by running:

$ kubectl get svc thunder

and looking for the External IP. Using this IP address, add an A record to your domain or subdomain that you want to
point to Thunder. If you are on AWS, add a CNAME record using the domain name of the Elastic Load Balancer.

40 Chapter 6. Deployment

CHAPTER

SEVEN

CLIENT LIBRARIES

There are multiple client libraries available for you to use in your end-user applications after you have Thunder running.

7.1 Java

The Thunder Java client is available on Maven Central. To add the client to your Gradle, Maven, sbt, or Leiningen
project, follow the instructions given at that link. For Maven, you can also read the following instructions.

7.1.1 Maven

Add the Thunder client artifact. The client artifact includes the api artifact, so there is no need to add both.

<dependency>
<groupId>com.sanctionco.thunder</groupId>
<artifactId>client</artifactId>
<version>${thunder.version}</version>

</dependency>

To determine the latest version available, check out the README, the GitHub releases page, or the Maven Central
Search.

7.1.2 Usage

Create a new ThunderClient instance with

1. The endpoint to access Thunder over HTTP.

2. Your application key/secret if using basic auth OR your access token if using OAuth.

ThunderClient thunderClient = ThunderClient.builder()
.endpoint("http://your.endpoint.com")
.authentication("USER-KEY", "USER_SECRET") // Basic auth
.authentication("ACCESS-TOKEN") // OAuth 2.0 access token
.build();

Any of the methods in ThunderClient are now available for use. For example, to get a user:

User user = thunderClient
.getUser("EMAIL", "PASSWORD")
.get();

41

https://search.maven.org/search?q=g:%22com.sanctionco.thunder%22%20AND%20a:%22client%22
https://github.com/RohanNagar/thunder/blob/master/README.md
https://github.com/RohanNagar/thunder/releases
https://search.maven.org/search?q=g:%22com.sanctionco.thunder%22%20AND%20a:%22client%22
https://search.maven.org/search?q=g:%22com.sanctionco.thunder%22%20AND%20a:%22client%22

Thunder Documentation

All of the ThunderClient methods return a CompletableFuture that will allow you to only block on the response
until you want to.

7.2 JavaScript (Node.js)

The official JavaScript Thunder client library is available on NPM. See the repository for usage instructions.

42 Chapter 7. Client Libraries

https://github.com/RohanNagar/thunder-client-js

HTTP ROUTING TABLE

/users
GET /users, 10
POST /users, 7
PUT /users, 8
DELETE /users, 11

/verify
GET /verify, 14
GET /verify/success, 17
POST /verify, 13
POST /verify/reset, 15

43

	Features
	REST API for user object operations
	Multiple Database Providers
	Email Verification
	Server-Side Password Hashing
	Secrets Fetching
	Basic Authentication or OAuth 2.0
	Additional User Properties
	User 1
	User 2

	Customizable Email Contents
	Customizable Verification Success Page
	Generated OpenAPI (Swagger) Specifications
	Official Docker Image
	Client Libraries

	Endpoints
	Create User
	Update User
	Get User
	Delete User
	Send Verification Email
	Verify User
	Reset Verification Status
	Get Verification Success Page

	Configuration Options
	Database
	DynamoDB
	In-Memory
	MongoDB

	Email
	Message Options
	Authentication
	Configuration Secrets
	AWS Secrets Manager

	User Password Hashing
	Property Validation
	Email Address Validation
	Operation Options
	OpenAPI
	Dropwizard Configuration

	User Attributes
	Exposed Attributes
	Extra Attributes

	HTTPS Support
	Quick Start
	Full Example
	Step 1: Create a self signed root CA certificate
	Step 2: Create a server certificate
	Step 3: Sign the server certificate with the root CA certificate
	Step 4: Convert server certificate and private key to PKCS#12 format
	Step 5: Load the server certificate into the Java keystore
	Step 6: Add fields to Dropwizard configuration file
	Step 7: Load the root CA certificate into your local certificate store
	Example certificate configuration files

	Deployment
	1. Create DynamoDB Table
	2. Configure SES
	3. Create a K8s Cluster
	Azure Kubernetes Services (AKS)
	Get the Azure CLI
	Login to Azure
	Create a Resource Group
	Register Resource Providers
	Create AKS Cluster and Connect

	4. Deploy Thunder
	5. Add Domain Record (Optional)

	Client Libraries
	Java
	Maven
	Usage

	JavaScript (Node.js)

	HTTP Routing Table

