

Thunder Documentation

Thunder is a REST API that interfaces with a DynamoDB database to provide an easy way to create, update, fetch, and delete users.
Thunder was originally built as part of the backend for a social media management application, but has since evolved into a generic user management application.
See the roadmap for more information on where Thunder is headed.

This documentation holds information about how to use Thunder in your own applications. See the links on the sidebar to read more.

Get started by following Deployment.

Keep up-to-date by viewing the changelog [https://github.com/RohanNagar/thunder/wiki/Changelog].

	Features
	REST API for user object operations

	Multiple Database Providers

	Email Verification

	Server-Side Password Hashing

	Secrets Fetching

	Basic Authentication or OAuth 2.0

	Additional User Properties

	Customizable Email Contents

	Customizable Verification Success Page

	Generated OpenAPI (Swagger) Specifications

	Official Docker Image

	Client Libraries

	Endpoints
	Create User

	Update User

	Get User

	Delete User

	Send Verification Email

	Verify User

	Reset Verification Status

	Get Verification Success Page

	Configuration Options
	Database

	Email

	Message Options

	Authentication

	Configuration Secrets

	User Password Hashing

	Property Validation

	Email Address Validation

	Operation Options

	OpenAPI

	Dropwizard Configuration

	User Attributes
	Exposed Attributes

	Extra Attributes

	HTTPS Support
	Quick Start

	Full Example

	Deployment
	1. Create DynamoDB Table

	2. Configure SES

	3. Create a K8s Cluster

	4. Deploy Thunder

	5. Add Domain Record (Optional)

	Client Libraries
	Java

	JavaScript (Node.js)

Features

REST API for user object operations

At its core, Thunder is a REST API that provides endpoints to manage user accounts and information.
Your frontend application can use Thunder to create, retrieve, update, and delete user accounts.
All of the user information is stored in a database that Thunder interfaces with.

Multiple Database Providers

Thunder provides implementations for multiple database providers so that you can use the database
of your choice. Currently, Thunder supports Amazon DynamoDB and MongoDB, with support for additional
providers coming in the near future. See Database for more information on
configuring a specific database provider.

Email Verification

Thunder provides functionality to send verification emails and keep email verification state.
POST requests to /verify will send a verification email with a verification URL. GET
requests to /verify will mark the email address as verified. Finally, applications can also
reset the verification status of a user’s email address for any reason at /verify/reset.

Note

Thunder currently relies on Simple Email Service (SES) to send emails, so an AWS account is
required if email verification is enabled for your instance of Thunder.

Server-Side Password Hashing

Thunder can perform server-side password hashing of user passwords. By default in version 2.0+,
Thunder will not hash any user passwords. However, you can enable this in your configuration, and
additionally specify the hashing algorithm to be used. See User Password Hashing for more
information on the configuration options.

Secrets Fetching

Thunder is able to fetch values defined in your configuration file from a secrets provider. This is
particularly useful for configuration such as a MongoDB connection string, or the secret key used
to validate HMAC-SHA signed JWT tokens. See Configuration Secrets for more information.

Basic Authentication or OAuth 2.0

Thunder requires authentication from clients when making requests to the API. This authentication
can be configured to be either basic authentication (with a user-defined list of allowed
username/password combinations), or OAuth 2.0 authentication. When using OAuth 2.0, you must have
a separate service that will supply OAuth JWT tokens, which clients will then send to Thunder in the
Authorization header. Thunder will verify that the JWT tokens it receives are valid and that they
contain the right claims specified by the user in the configuration file. See Authentication
for more information.

Additional User Properties

Thunder always requires that your user objects contain an email address and a password. However,
you can include any additional number of properties in your user objects. By default, additional
user properties are flexible and Thunder will not perform any validation of these properties. For
example, you can create two users like the following:

User 1

{
 "email": "sampleuser@sanctionco.com",
 "password": "hunter2",
 "appId": 1234567890
}

User 2

{
 "email": "seconduser@sanctionco.com",
 "password": "hunter3",
 "appId": 1234567890,
 "additionalProperty": "So many properties!"
}

and Thunder will accept both.

You can also configure Thunder to perform validation on these properties to ensure that all users
have the same properties and that they are the correct type (String, Integer, Double, etc). See
Property Validation for more information on the configuration options.

Customizable Email Contents

The contents of verification emails can be completely customized. See Email
for more information on the configuration options.

Customizable Verification Success Page

The success page that is shown to the end-user when their email is successfully verified can be
customized. See Email for more information on the configuration options.

Generated OpenAPI (Swagger) Specifications

Thunder offers generated OpenAPI [https://swagger.io/docs/specification/about/] documentation
that is available at the /openapi.yaml or /openapi.json endpoints. This generated
documentation can be used to automatically generate client libraries that are supported by the
openapi-generator [https://github.com/OpenAPITools/openapi-generator]. Additionally, Thunder runs
Swagger UI at the /swagger endpoint. You can use the UI to view all of the available endpoints
as well as to make requests against the API.

Official Docker Image

Thunder provides an official Docker image [https://hub.docker.com/r/rohannagar/thunder/] so that
your instance of Thunder can be easily run in a container environment. There is also documentation
on how to run Thunder in Kubernetes.

Client Libraries

Thunder provides client libraries for easy communication between your application and your instance
of Thunder. See Client Libraries for more information on the client libraries.

Endpoints

Create User

	
POST /users

	Creates a new user in the database.

Example:

http

POST /users HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=
Content-Type: application/json

{
 "email" : {
 "address" : "sampleuser@sanctionco.com"
 },
 "password" : "12345",
 "myCustomProperty" : "Hello World"
}

curl

curl -i -X POST http://nohost/users -H "Content-Type: application/json" --data-raw '{"email": {"address": "sampleuser@sanctionco.com"}, "myCustomProperty": "Hello World", "password": "12345"}' --user admin:admin

wget

wget -S -O- http://nohost/users --header="Content-Type: application/json" --post-data='{"email": {"address": "sampleuser@sanctionco.com"}, "myCustomProperty": "Hello World", "password": "12345"}' --auth-no-challenge --user=admin --password=admin

httpie

echo '{
 "email": {
 "address": "sampleuser@sanctionco.com"
 },
 "myCustomProperty": "Hello World",
 "password": "12345"
}' | http POST http://nohost/users Content-Type:application/json -a admin:admin

response

HTTP/1.1 201 CREATED
Content-Type: application/json

{
 "email" : {
 "address" : "sampleuser@sanctionco.com",
 "verified" : false,
 "verificationToken" : null
 },
 "password" : "12345",
 "creationTime" : 1617152816,
 "lastUpdateTime" : 1617152816,
 "myCustomProperty" : "Hello World"
}

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – basic authentication application name and secret

	Status Codes:

	
	201 Created [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2] – user was successfully created

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – the create request was malformed

	409 Conflict [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – the user already exists in the database

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – the database rejected the request for an unknown reason

	503 Service Unavailable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – the database is currently unavailable

Update User

	
PUT /users

	Updates an existing user in the database.

Example:

http

PUT /users?email=sampleuser%40sanctionco.com HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=
Content-Type: application/json
password: YWRtaW46YWRtaW4=

{
 "email" : {
 "address" : "newsampleuser@sanctionco.com",
 "verified" : false,
 "verificationToken" : null
 },
 "password" : "12345",
 "myCustomProperty" : "My properties have changed"
}

curl

curl -i -X PUT 'http://nohost/users?email=sampleuser%40sanctionco.com' -H "Content-Type: application/json" -H "Password: YWRtaW46YWRtaW4=" --data-raw '{"email": {"address": "newsampleuser@sanctionco.com", "verificationToken": null, "verified": false}, "myCustomProperty": "My properties have changed", "password": "12345"}' --user admin:admin

wget

wget -S -O- --method=PUT 'http://nohost/users?email=sampleuser%40sanctionco.com' --header="Content-Type: application/json" --header="Password: YWRtaW46YWRtaW4=" --body-data='{"email": {"address": "newsampleuser@sanctionco.com", "verificationToken": null, "verified": false}, "myCustomProperty": "My properties have changed", "password": "12345"}' --auth-no-challenge --user=admin --password=admin

httpie

echo '{
 "email": {
 "address": "newsampleuser@sanctionco.com",
 "verificationToken": null,
 "verified": false
 },
 "myCustomProperty": "My properties have changed",
 "password": "12345"
}' | http PUT 'http://nohost/users?email=sampleuser%40sanctionco.com' Content-Type:application/json Password:YWRtaW46YWRtaW4= -a admin:admin

response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "email" : {
 "address" : "newsampleuser@sanctionco.com",
 "verified" : false,
 "verificationToken" : null
 },
 "password" : "12345",
 "creationTime" : 1617152816,
 "lastUpdateTime" : 1617152850,
 "myCustomProperty" : "My properties have changed"
}

	Query Parameters:

	
	email – the existing email address of the user to update. This is optional, and only
required if the email is to be changed.

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – basic authentication application name and secret

	password – the (hashed) password of the user to update

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – user was successfully updated

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – the update request was malformed

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – the request was unauthorized

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – the existing user to update was not found in the database

	409 Conflict [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10] – a user with the new email already exists in the database

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – the database rejected the request for an unknown reason

	503 Service Unavailable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – the database is currently unavailable

Get User

	
GET /users

	Retrieves a user from the database.

Example:

http

GET /users?email=sampleuser%40sanctionco.com HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=
Content-Type: application/json
password: YWRtaW46YWRtaW4=

curl

curl -i -X GET 'http://nohost/users?email=sampleuser%40sanctionco.com' -H "Content-Type: application/json" -H "Password: YWRtaW46YWRtaW4=" --user admin:admin

wget

wget -S -O- 'http://nohost/users?email=sampleuser%40sanctionco.com' --header="Content-Type: application/json" --header="Password: YWRtaW46YWRtaW4=" --auth-no-challenge --user=admin --password=admin

httpie

http 'http://nohost/users?email=sampleuser%40sanctionco.com' Content-Type:application/json Password:YWRtaW46YWRtaW4= -a admin:admin

response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "email" : {
 "address" : "sampleuser@sanctionco.com",
 "verified" : false,
 "verificationToken" : null
 },
 "password" : "12345",
 "creationTime" : 1617152816,
 "lastUpdateTime" : 1617152850,
 "myCustomProperty" : "Hello World"
}

	Query Parameters:

	
	email – the email address of the user

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – basic authentication application name and secret

	password – the (hashed) password of the user

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – the operation was successful

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – the get request was malformed

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – the request was unauthorized

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – the user was not found in the database

	503 Service Unavailable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – the database is currently unavailable

Delete User

	
DELETE /users

	Deletes a user from the database.

Example:

http

DELETE /users?email=sampleuser%40sanctionco.com HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=
Content-Type: application/json
password: YWRtaW46YWRtaW4=

curl

curl -i -X DELETE 'http://nohost/users?email=sampleuser%40sanctionco.com' -H "Content-Type: application/json" -H "Password: YWRtaW46YWRtaW4=" --user admin:admin

wget

wget -S -O- --method=DELETE 'http://nohost/users?email=sampleuser%40sanctionco.com' --header="Content-Type: application/json" --header="Password: YWRtaW46YWRtaW4=" --auth-no-challenge --user=admin --password=admin

httpie

http DELETE 'http://nohost/users?email=sampleuser%40sanctionco.com' Content-Type:application/json Password:YWRtaW46YWRtaW4= -a admin:admin

response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "email" : {
 "address" : "sampleuser@sanctionco.com",
 "verified" : false,
 "verificationToken" : null
 },
 "password" : "12345",
 "creationTime" : 1617152816,
 "lastUpdateTime" : 1617152850,
 "myCustomProperty" : "Hello World"
}

	Query Parameters:

	
	email – the email address of the user

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – basic authentication application name and secret

	password – the (hashed) password of the user

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – the operation was successful

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – the delete request was malformed

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – the request was unauthorized

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – the user was not found in the database

	503 Service Unavailable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – the database is currently unavailable

Send Verification Email

	
POST /verify

	Initiates the user verification process by sending a verification email
to the email address provided as a query parameter. The user in the database will be updated
to include a unique verification token that is sent along with the email.

Example:

http

POST /verify?email=sampleuser%40sanctionco.com HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=
Content-Type: application/json
password: YWRtaW46YWRtaW4=

curl

curl -i -X POST 'http://nohost/verify?email=sampleuser%40sanctionco.com' -H "Content-Type: application/json" -H "Password: YWRtaW46YWRtaW4=" --user admin:admin

wget

wget -S -O- 'http://nohost/verify?email=sampleuser%40sanctionco.com' --header="Content-Type: application/json" --header="Password: YWRtaW46YWRtaW4=" --auth-no-challenge --user=admin --password=admin

httpie

http POST 'http://nohost/verify?email=sampleuser%40sanctionco.com' Content-Type:application/json Password:YWRtaW46YWRtaW4= -a admin:admin

response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "email" : {
 "address" : "sampleuser@sanctionco.com",
 "verified" : false,
 "verificationToken" : "0a4b81f3-0756-468e-8d98-7199eaab2ab8"
 },
 "password" : "12345",
 "creationTime" : 1617152816,
 "lastUpdateTime" : 1617152850,
 "myCustomProperty" : "Hello World"
}

	Query Parameters:

	
	email – the email address of the user

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – basic authentication application name and secret

	password – the (hashed) password of the user

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – the operation was successful

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – the send email request was malformed

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – the request was unauthorized

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – the user to email was not found in the database

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – the database rejected the request for an unknown reason

	503 Service Unavailable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – the database is currently unavailable

Verify User

	
GET /verify

	Used to verify a user email. Typically, the user will click on this link in their email
to verify their account. Upon verification, the user object in the database
will be updated to indicate that the email address is verified.

Example:

http

GET /verify?email=sampleuser%40sanctionco.com&token=0a4b81f3-0756-468e-8d98-7199eaab2ab8&response_type=json HTTP/1.1
Content-Type: application/json

curl

curl -i -X GET 'http://nohost/verify?email=sampleuser%40sanctionco.com&token=0a4b81f3-0756-468e-8d98-7199eaab2ab8&response_type=json' -H "Content-Type: application/json"

wget

wget -S -O- 'http://nohost/verify?email=sampleuser%40sanctionco.com&token=0a4b81f3-0756-468e-8d98-7199eaab2ab8&response_type=json' --header="Content-Type: application/json"

httpie

http 'http://nohost/verify?email=sampleuser%40sanctionco.com&token=0a4b81f3-0756-468e-8d98-7199eaab2ab8&response_type=json' Content-Type:application/json

response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "email" : {
 "address" : "sampleuser@sanctionco.com",
 "verified" : true,
 "verificationToken" : "0a4b81f3-0756-468e-8d98-7199eaab2ab8"
 },
 "password" : "12345",
 "creationTime" : 1617152816,
 "lastUpdateTime" : 1617152850,
 "myCustomProperty" : "Hello World"
}

	Query Parameters:

	
	email – the email address of the user

	token – the verification token from the email that was associated with the user

	response_type – the optional response type, either HTML or JSON. If HTML is specified,
the URL will redirect to /verify/success. The default response_type is JSON.

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – the operation was successful and JSON was returned

	303 See Other [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4] – the request is redirecting to /verify/success

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – the verify request was malformed

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – the user to verify was not found in the database

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – the request failed for a potentially unknown reason

	503 Service Unavailable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – the database is currently unavailable

Reset Verification Status

	
POST /verify/reset

	Resets the verification status of the user’s email to false.

Example:

http

POST /verify/reset?email=sampleuser%40sanctionco.com HTTP/1.1
Authorization: Basic YWRtaW46YWRtaW4=
Content-Type: application/json
password: YWRtaW46YWRtaW4=

curl

curl -i -X POST 'http://nohost/verify/reset?email=sampleuser%40sanctionco.com' -H "Content-Type: application/json" -H "Password: YWRtaW46YWRtaW4=" --user admin:admin

wget

wget -S -O- 'http://nohost/verify/reset?email=sampleuser%40sanctionco.com' --header="Content-Type: application/json" --header="Password: YWRtaW46YWRtaW4=" --auth-no-challenge --user=admin --password=admin

httpie

http POST 'http://nohost/verify/reset?email=sampleuser%40sanctionco.com' Content-Type:application/json Password:YWRtaW46YWRtaW4= -a admin:admin

response

HTTP/1.1 200 OK
Content-Type: application/json

{
 "email" : {
 "address" : "sampleuser@sanctionco.com",
 "verified" : false,
 "verificationToken" : null
 },
 "password" : "12345",
 "creationTime" : 1617152816,
 "lastUpdateTime" : 1617152850,
 "myCustomProperty" : "Hello World"
}

	Query Parameters:

	
	email – the email address of the user

	Request Headers:

	
	Authorization [https://www.rfc-editor.org/rfc/rfc7235#section-4.2] – basic authentication application name and secret

	password – the (hashed) password of the user

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – the operation was successful

	400 Bad Request [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1] – the reset request was malformed

	401 Unauthorized [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2] – the request was unauthorized

	404 Not Found [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5] – the user to reset was not found in the database

	500 Internal Server Error [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1] – the database rejected the request for an unknown reason

	503 Service Unavailable [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4] – the database is currently unavailable

Get Verification Success Page

	
GET /verify/success

	Returns an HTML success page that is shown after a user successfully verifies their account.
GET /verify will redirect to this URL if the response_type query parameter
is set to html.

Example:

http

GET /verify/success HTTP/1.1
Content-Type: text/html

curl

curl -i -X GET http://nohost/verify/success -H "Content-Type: text/html"

wget

wget -S -O- http://nohost/verify/success --header="Content-Type: text/html"

httpie

http http://nohost/verify/success Content-Type:text/html

response

HTTP/1.1 200 OK
Content-Type: text/html

<!DOCTYPE html>
<html>
 <div class="alert alert-success">
 <div align="center">Success!
Your account has been verified.</div>
 </div>
 <link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/css/bootstrap.min.css" />
</html>

	Status Codes:

	
	200 OK [https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1] – the operation was successful

Configuration Options

Thunder is highly configurable to fit your needs. This page serves as an extensive guide to what configuration options are available.
If something that you wanted to configure is not available, open an issue to let us know!

Database

This configuration object is REQUIRED.
Use the type option within the database configuration in order to select the type of
database that you are using. The remaining configuration options will change depending on the value
of type. See DynamoDB, In-Memory,
and MongoDB below.

database:
 type: [dynamodb/memory/mongodb]

	Name

	Default

	Description

	type

	REQUIRED

	The database type to connect to. One of dynamodb, memory, or mongodb.

DynamoDB

database:
 type: dynamodb
 endpoint:
 region:
 tableName:

	Name

	Default

	Description

	endpoint

	REQUIRED

	The endpoint used to access DynamoDB.

	region

	REQUIRED

	The AWS region that the DynamoDB table exists in.

	tableName

	REQUIRED

	The name of the DynamoDB table.

In-Memory

Please note that while memory is an option to enable the use of an in-memory database,
this configuration should NOT be used in production as data loss can easily occur.

database:
 type: memory
 maxMemoryPercentage:

	Name

	Default

	Description

	maxMemoryPercentage

	75

	The maximum amount of JVM memory that can be in use. If the amount of used
memory goes above this percentage, then POST requests to Thunder will
begin to fail.

MongoDB

database:
 type: mongodb
 connectionString:
 databaseName:
 collectionName:

	Name

	Default

	Description

	connectionString

	REQUIRED

	The connection string used to access MongoDB.

	databaseName

	REQUIRED

	The name of the database within the MongoDB instance.

	collectionName

	REQUIRED

	The name collection (table) within the database.

Email

The email verification feature of Thunder allows you to ensure user email addresses actually belong to them.
By performing a POST on the /verify endpoint, an email will be sent to the address of the specified user.
The contents of this email can be customized through the Message Options configuration.
If no custom contents are used, the default contents are included in the application and can be found
on Github [https://github.com/RohanNagar/thunder/tree/master/application/src/main/resources].

email:
 type: [none|ses]
 endpoint:
 region:
 fromAddress:
 messageOptions:
 subject:
 bodyHtmlFilePath:
 bodyTextFilePath:
 urlPlaceholderString:
 successHtmlFilePath:

	Name

	Default

	Description

	type

	none

	The type of email provider to use for verification. Currently, ses is the only available provider. Use none to disable email verification.

	endpoint

	REQUIRED IF ENABLED

	The endpoint used to access Amazon SES.

	region

	REQUIRED IF ENABLED

	The AWS region to use SES in.

	fromAddress

	REQUIRED IF ENABLED

	The address to send emails from.

	messageOptions

	null

	See Message Options below. If null, default options are used.

Message Options

messageOptions:
 subject:
 bodyHtmlFilePath:
 bodyTextFilePath:
 urlPlaceholderString:
 successHtmlFilePath:

	Name

	Default

	Description

	subject

	“Account Verification”

	The subject line for the email to be sent.

	bodyHtmlFilePath

	null

	The path to the HTML to include in the verification email body.
If null, then a default body is used.

	bodyTextFilePath

	null

	The path to the text to include in the verification email body.
If null, then a default body is used.

	urlPlaceholderString

	CODEGEN-URL

	The string contained in the body files that should be replaced with a per-user account verification URL.

	successHtml

	null

	The path to the HTML page to show users when they have successfully verified their email address.
If null, then a default page is shown.

Authentication

This is a required configuration block to define the authentication mechanism that clients will use
to make API calls to your Thunder instance. Both Basic Auth and OAuth 2.0 are supported types of
authentication. If this configuration section is not specified, then Thunder will not allow access
to any requests. You should specify at least one key that has access to the API (if using basic auth),
or set up OAuth.

auth:
 type: [basic|oauth]
 # Only use for basic auth
 keys:
 - application:
 secret:
 - application:
 secret:
 # Only use for OAuth
 hmacSecret:
 rsaPublicKeyFilePath:
 issuer:
 audience:

	Name

	Default

	Description

	type

	basic

	The type of authentication that Thunder should use. Either basic or oauth.

	keys

	EMPTY

	The list of approved keys for basic auth API access. Each key has two properties: application (the basic authentication
username) and secret (the basic authentication password). Both properties on the key are required.

	hmacSecret

	null

	The secret used to sign/verify JWT tokens signed with the HMAC family of algorithms. It is recommended
to store this value in a secrets provider and reference it as described in Configuration Secrets.
Either this or rsaPublicKeyFilePath must be present.

	rsaPublicKeyFilePath

	null

	The path to a file containing the RSA public key used to verify JWT tokens signed with the RSA
family of algorithms. The file must be in .der format, which can be generated with openssl:
openssl rsa -in private_key.pem -pubout -outform DER -out public_key.der. Either this or
hmacSecret must be present.

	issuer

	REQUIRED for oauth

	The issuer of JWT tokens. Will be used in JWT token validation.

	audience

	none

	The audience to use when validation JWT tokens. If left empty, no audience will
be required on JWT tokens.

Configuration Secrets

This configuration object is OPTIONAL.

If you want to keep specific configuration values in your configuration file a secret, you can
have Thunder read values of keys from a supported secrets provider. To have Thunder read a secret,
use the ${...} notation, where ... is the name of the secret stored in your secrets provider.

To configure your secrets provider, use the following configuration:

secrets:
 provider: [env|secretsmanager]

	Name

	Default

	Description

	provider

	env

	The provider that is storing your secrets.
Use env to read secrets from local environment variables.
Use secretsmanager to read secrets from AWS Secrets Manager. See AWS Secrets Manager below.

AWS Secrets Manager

secrets:
 provider: secretsmanager
 endpoint:
 region:
 retryDelaySeconds:
 maxRetries:

	Name

	Default

	Description

	endpoint

	REQUIRED

	The endpoint used to access Secrets Manager.

	region

	REQUIRED

	The AWS region that the Secrets Manager endpoint is in.

	retryDelaySeconds

	1

	The amount of time to wait between retries if there is an error connecting to
Secrets Manager.

	maxRetries

	0

	The maximum amount of times to retry looking up a secret from Secrets Manager
if there is an error connecting to Secrets Manager.

User Password Hashing

This configuration object is OPTIONAL.

This group of options allows you to configure the hashing algorithm used by Thunder for server-side hashing of
user passwords, as well as the algorithm used to check the password value in the request header.

passwordHash:
 algorithm:
 serverSideHash:
 headerCheck:
 allowCommonMistakes:

	Name

	Default

	Description

	algorithm

	simple

	The algorithm to use for server side hashing and password comparison.
Supported values are: simple, sha256, bcrypt, and argon.

	serverSideHash

	false

	Whether or not to enable server side hashing. When enabled, a new user or
updated password will be hashed within Thunder before being stored in the database.

	headerCheck

	true

	Whether or not to enable password header checks. When enabled, the password header
is required on GET, PUT, DELETE calls to /users, POST calls to /verify,
and POST calls to /verify/reset. When disabled, this header is not required.

	allowCommonMistakes

	false

	Whether or not to allow the user to have common password mistakes. When enabled, if the user
provides a password with any of the following common mistakes, the password will still be
accepted as valid:

	The user inserted a random character before or after

	The user accidentally capitalized (or did not capitalize) the first letter

	The user mistakenly used caps lock

Property Validation

This configuration object is OPTIONAL.

This configuration contains a list of additional user properties to be validated on POST or PUT calls to /users.
The default is no validation if properties is not defined.

For each property, new and updated users will be validated to ensure their properties map includes a property with that name and type.

Additionally, there are two options to change the behavior of property validation, allowSubset and allowSuperset.

allowSubset allows a user’s properties to be a subset of the defined allowed properties.

allowSuperset allows a user’s properties to be a superset of the defined allowed properties.

This leads to 4 scenarios:

1. Both true. Users can have extra fields than those specified, or less than those specified,
but the ones that are present and specified will be checked to make sure they are the correct type.

2. allowSuperset true and allowSubset false. Users can have extra fields than those specified,
but no less than those specified.

3. allowSuperset false and allowSubset true. Users can not have extra fields, but they can have less.
All properties must be in the list of specified properties.

4. Both false. Users can not have extra fields or less than those specified.
All specified fields must exist and be correct, and no more.

properties:
 allowSubset:
 allowSuperset:
 allowed:
 - name:
 type:
 - name:
 type:

	Name

	Default

	Description

	allowSubset

	true

	Allows a user’s properties to be a subset of the defined allowed properties.

	allowSuperset

	true

	Allows a user’s properties to be a superset of the defined allowed properties.

	allowed

	Empty list

	The list of additional user properties to validate on POST or PUT requests.

	name

	REQUIRED PER ALLOWED RULE

	The name of the property.

	type

	REQUIRED PER ALLOWED RULE

	The type of the property. Supported types are: string, integer, double, boolean, list, and map.
Any other type defined is treated as Object, meaning any object type will be allowed.
Use object if you don’t want to enforce a specific type for this property.

Email Address Validation

This configuration object is OPTIONAL.

By default, Thunder validates email addresses of new users with basic email validation. However,
you can add additional custom rules that are used as part of validation.

rules:
 - check: [startswith/endswith/contains/doesnotcontain]
 value:
 - check: [startswith/endswith/contains/doesnotcontain]
 value:

	Name

	Default

	Description

	rules

	none

	A list of rules to use when validating an email address. Each rule has two properties:
check and value. For each rule, both properties are required. The types of checks
available are currently startswith, endswith, contains, and doesnotcontain.
The value should be the value you want to check against. For example, if you want to make sure
that email addresses end with a specific domain test.com, you would use endswith as
the check and test.com as the value.

Operation Options

This configuration object is OPTIONAL.

This contains configuration options for individual requests made to Thunder.

options:
 operationTimeout:

	Name

	Default

	Description

	operationTimeout

	30s

	Set the timeout for each Thunder operation.

OpenAPI

This configuration object is OPTIONAL.

This contains configuration options for the OpenAPI and Swagger UI. Swagger UI is enabled by default,
however you can disable it through the enabled option. There are also additional options related
to the metadata of the generated OpenAPI.

openApi:
 enabled:
 title:
 version:
 description:
 contact:
 contactEmail:
 license:
 licenseUrl:

	Name

	Default

	Description

	enabled

	true

	Whether or not to enable OpenAPI generation and Swagger UI.

	title

	Thunder API

	The title of the Swagger page.

	version

	Current version

	The version of the application.

	description

	A fully customizable user
management REST API

	The description of the application.

	contact

	null

	The name of the contact person for the application.

	contactEmail

	null

	The email of the contact person for the application.

	license

	MIT

	The name of the license for the application.

	licenseUrl

	https://github.com/RohanNagar/
thunder/blob/master/LICENSE.md

	The URL of the license for the application.

Dropwizard Configuration

In addition to the configuration options above, Dropwizard provides certain configuration options.
Those can be seen here [http://www.dropwizard.io/1.3.1/docs/manual/configuration.html].

User Attributes

Exposed Attributes

	email The email for the user, represented as a string. This is always required, as it is the unique identifier for a user.

	password The user’s password as a string. This is always required, and will be stored as a hashed version of the actual password.

	creationTime A long representing the time in epoch milliseconds that this user was created in the database.

	lastUpdateTime A long representing the time in epoch milliseconds that this user was last updated in the database.

	properties A map of additional user properties. These can be anything you wish, using a String as the identifier and any object type as the value. Properties can be validated on POST/PUT by enabling Property Validation.

Extra Attributes

In addition, Thunder stores metadata informational attributes about each user. These are stored in the database but are not exposed through the API at this time.

	id A unique identifier for the user. This will be created when the new user is created, and never updated after that.

	version A unique string that determines the current version of the user. This is used to verify updates to a user, in the case where two updates to the same user happen simultaneously.

HTTPS Support

Hyper Text Transport Protocol Secure (HTTPS) allows the encryption of traffic between Thunder and its client connections.
SanctionCo highly recommends that you secure your traffic since unencrypted traffic exposes sensitive data to potential attackers.

There are two primary concerns when connecting to a Thunder instance:

	Is my data confidential?

	Is this Thunder instance trustworthy?

Thankfully both of these concerns are addressable using Transport Layer Security (TLS) as an underlying protocol to the existing HTTP protocol.

TLS allows the encryption of traffic between Thunder and its clients using any number of specific cipher algorithms,
and allows the validation of a servers ownership using trust chaining.

Quick Start

If you don’t want to create your own CA for testing you can always use the default one in the thunder config/ directory.
The default java key store is called dev-server.jks and is already defined in the dev config file.
The only action you need to take it to import the ca-chain.cert.pem file also located in the config/ directory.
Once imported you need to trust the certificate and you you’ll be ready to test your HTTPS functionality!

Full Example

This short tutorial will walk you through the steps needed to secure your Thunder instances using your own self signed root certificate.

Note

This should only be used for development and testing.
In production it is highly recommended that you purchase a signed certificate from a common CA or use a well established key management system
through any number of available cloud services. There are many steps not covered in this tutorial that are crucial to the long term success
and security of a key management system.

Step 1: Create a self signed root CA certificate

The root CA will act as your identity. Users will have a copy of your root CA certificate and will
use this when verifying the authenticity of a Thunder instance. While the public key is known by anyone,
it is crucial that you keep the private key safe (preferably offline).

This command will create your root CA certificate and it’s corresponding private key both in PEM format.

$ openssl req -x509 -new -out rootCA.crt -config openssl_ca.cnf

Step 2: Create a server certificate

The server certificate is what a specific Thunder instance uses to encrypt traffic to a connected user.
Both the private and public keys are stored on the server to make this possible.

This command will create a certificate sign request (CSR) containing your servers public key. We will sign this
key with the rootCA’s private key and output a new certificate containing the servers private key and a signature from the root CA.
The config file also defines the key length for generating a private key and where to write it to.

$ openssl req -new -out server.csr -config openssl.cnf

Step 3: Sign the server certificate with the root CA certificate

Signing the server certificate with our root CA certificate allows a user with our trusted root CA certificate
to validate any specific Thunder certificate as trusted since the root CA signed it.

Note

Signing a CSR with extension fields does NOT copy the fields to the resulting certificate.
For this you have to specify the extensions in the command line directly as shown in the below command.

$ openssl x509 -req -in server.csr -CA rootCA.crt -CAkey rootCA.key -CAcreateserial -out server.crt -days 500 -sha256 -extfile openssl.cnf -extensions v3_req

Step 4: Convert server certificate and private key to PKCS#12 format

The java keystore (jks) follows the pkcs#12 standard for storing and managing public certificates and private keys.
This means we need to convert our public certificate and private key into a pkcs12 file so the java keystore and import and use our certificates.

$ openssl pkcs12 -export -in server.crt -inkey server.key -out server.p12 -CAfile rootCA.crt

This command takes in our server cert and private key, then takes in the CA certificate that signed it to create a complete certificate chain.
If we had CA’s further up the chain we would include them too.

Step 5: Load the server certificate into the Java keystore

The keystore allows Dropwizard to recognize our keys and encrypt our traffic / prove our identity to users.
The entire certificate chain from the root CA’s certificate to the servers certificate needs to be included.
This is because a user should be able to confirm the root of trust as your CA certificate no matter how many intermediate CA’s and server certificates exist.

$ keytool -importkeystore -deststorepass password -destkeypass password -destkeystore server.jks \
-srckeystore server.p12 -srcstoretype PKCS12 -srcstorepass password

Make sure you use the password for the java key store you created in step 3 for the srcstorepass flag.
The destkeypass is the password for the java keystore you are creating.

Step 6: Add fields to Dropwizard configuration file

Next we need to give Dropwizard the path to our keystore so it can encrypt our traffic.
keyStorePath and keyStorePassword will specify the path and password of the keystore created in step 5.
validateCerts and validatePeers are included as false to clarify that peers and clients will not require a certificate themselves for validation.
Here is an example config.yaml used for Thunder’s development environment:

Information to access DynamoDB
database:
 endpoint: http://localhost:4567
 region: us-east-1
 tableName: pilot-users-test

Information to access SES
email:
 endpoint: http://localhost:9001
 region: us-east-1
 fromAddress: noreply@sanctionco.com

Approved Application Authentication Credentials
approvedKeys:
 - application: application
 secret: secret

Server configuration
server:
 applicationConnectors:
 - type: http
 port: 8080
 - type: https
 port: 8443
 keyStorePath: ./config/server.jks
 keyStorePassword: password
 validateCerts: false
 validatePeers: false

 adminConnectors:
 - type: http
 port: 8081
 - type: https
 port: 8444
 keyStorePath: ./config/server.jks
 keyStorePassword: password
 validateCerts: false
 validatePeers: false

Step 7: Load the root CA certificate into your local certificate store

We need to load the root CA’s certificate onto our computers local certificate store and mark it as trustworthy.
Most common CA certificates are already on your computer when you purchase the operating system.
This usually means you can connect to most websites without trouble since they will have signed a certificate with a common CA.
Our CA is anything but common so we have to take this extra step for our connection can be trusted.

On MacOS open keychain access and do file > import items then navigate to your public rootCA.crt certificate. Or:

$ sudo security add-trusted-cert -d -r trustRoot -k /Library/Keychains/System.keychain ~/rootCA.crt

To remove:

$ sudo security delete-certificate -c "<name of existing certificate>"

On Linux (Ubuntu):

$ sudo cp rootCA.crt /usr/local/share/ca-certificates/rootCA.crt
$ sudo update-ca-certificates

To remove:

$ sudo rm /usr/local/share/ca-certificates/rootCA.crt
$ sudo update-ca-certificates --fresh

Example certificate configuration files

Openssl CA config

This file is used to create a CA certificate and private key for Sanction development.

[req]
default_bits = 4096
distinguished_name = req_distinguished_name
default_keyfile = rootCA.key
prompt = no
encrypt_key = no
default_md = sha256
x509_extensions = v3_ca

[req_distinguished_name]
countryName = "US"
stateOrProvinceName = "Texas"
localityName = "Austin"
organizationName = "Sanction"
organizationalUnitName = "Sanction Development CA"
commonName = "sanctionco.com"

[v3_ca]
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer
basicConstraints = critical, CA:true
keyUsage = critical, digitalSignature, cRLSign, keyCertSign

Openssl server config

This file is used to create a CSR for signing with the Sanction development CA.

[req]
default_bits = 2048
default_md = sha256
default_keyfile = server.key
prompt = no
encrypt_key = no
distinguished_name = req_distinguished_name
req_extensions = v3_req

[req_distinguished_name]
countryName = "US"
stateOrProvinceName = "Texas"
localityName = "Austin"
organizationName = "Sanction"
organizationalUnitName = "Development"
commonName = "sanctionco.com"

[v3_req]
subjectAltName = DNS:www.sanctionco.com,DNS:sanctionco.com,DNS:localhost

Deployment

Currently, deploying Thunder requires an AWS account.
You will need to create a DynamoDB Table and set up SES (Simple Email Service) for an email address that you will send verification emails from.
After that is set up, you can create a Kubernetes cluster on any cloud provider and deploy Thunder to that cluster.

In the coming releases, Thunder will include more options for database providers, which will lessen the AWS requirement.

1. Create DynamoDB Table

To create a DynamoDB table, use the template in scripts/aws/dynamo-table.yaml and deploy that template to AWS using CloudFormation.
Use the desired table name as the TableName parameter to the template.

2. Configure SES

Note

This step is only required if you want to have email verification enabled on your Thunder instance (which is the default).
If you want to skip this and disable email verification, set the following configuration option:

email:
 enabled: false

Set up SES using the instructions in the AWS console. If you want to send email from a domain that you own, follow these steps:

	
	Choose the “Verify a Domain” option from the SES portal. This will provide you with a DNS verification record set. The set includes:
	
	Record Name: Used by SES to validate that you own the domain.

	Alternate Domain Verification Record: Optional, not necessary.

	MX Record: This is used when receiving emails. This can only send to one SMTP server so you can’t have multiple MX records and expect the emails to be sent to all of them.

	DKIM Record Set: This is keys used to sign emails sent from a domain. They’re stored directly in the DNS as records. This is optional as well.

	Update your domain records with your domain registrar to include the new Record Name TXT record.

	Once you receive an email from AWS saying that your email was verified, you should be set up to send emails from SES.

3. Create a K8s Cluster

Create a cluster using Google Kubernetes Engine (GKE), AWS Elastic Container Service (EKS), or Azure Container Service (AKS).
Connect to this cluster with kubectl.

If you need help creating the cluster, see the following subsections.

Azure Kubernetes Services (AKS)

Get the Azure CLI

macOS:

$ brew install azure-cli

Linux:

$ AZ_REPO=$(lsb_release -cs)
$ echo "deb [arch=amd64] https://packages.microsoft.com/repos/azure-cli/ $AZ_REPO main" | \
 sudo tee /etc/apt/sources.list.d/azure-cli.list
$ sudo apt-key adv --keyserver packages.microsoft.com --recv-keys 52E16F86FEE04B979B07E28DB02C46DF417A0893
$ curl -L https://packages.microsoft.com/keys/microsoft.asc | sudo apt-key add -
$ sudo apt-get install apt-transport-https
$ sudo apt-get update && sudo apt-get install azure-cli

Login to Azure

$ az login

Create a Resource Group

$ az group create --name thunder --location eastus

Register Resource Providers

If not already done, make sure you have the necessary resource providers registered.

$ az provider register -n Microsoft.Network
$ az provider register -n Microsoft.Storage
$ az provider register -n Microsoft.Compute
$ az provider register -n Microsoft.ContainerService

Create AKS Cluster and Connect

$ az aks create --resource-group thunder --name thunder --node-count 1 --generate-ssh-keys --kubernetes-version 1.14.6 --node-vm-size Standard_B4ms

$ az aks get-credentials --resource-group thunder --name thunder

Verify that you are connected
$ kubectl get nodes

4. Deploy Thunder

Use the Helm chart [https://github.com/RohanNagar/thunder/tree/master/scripts/deploy/helm/thunder] to deploy Thunder
to your Kubernetes cluster.

Make sure Helm is set up locally and install Tiller in the cluster
$ helm init

Edit the values.yaml file to set the configuration. Then, install the chart.

$ helm install --name thunder scripts/deploy/helm/thunder

If you have the following error:

Error: release thunder failed: namespaces "default" is forbidden: User "system:serviceaccount:kube-system:default" cannot get resource
"namespaces" in API group "" in the namespace "default"

Then run the following commands and try again:

$ kubectl create serviceaccount --namespace kube-system tiller
$ kubectl create clusterrolebinding tiller-cluster-rule --clusterrole=cluster-admin --serviceaccount=kube-system:tiller
$ kubectl patch deploy --namespace kube-system tiller-deploy -p '{"spec":{"template":{"spec":{"serviceAccount":"tiller"}}}}'

After installing the Helm chart, wait a few minutes for the load balancer to come up. Once it’s up, you’ll have an IP to use!

$ export SERVICE_IP=$(kubectl get svc --namespace default thunder -o jsonpath='{.status.loadBalancer.ingress[0].ip}')
$ echo http://$SERVICE_IP:80

5. Add Domain Record (Optional)

If you have a custom domain name that you own, and you want to point it to your running instance of Thunder, find the IP address of your Load Balancer by running:

$ kubectl get svc thunder

and looking for the External IP. Using this IP address, add an A record to your domain or subdomain that you want to point to Thunder.
If you are on AWS, add a CNAME record using the domain name of the Elastic Load Balancer.

Client Libraries

There are multiple client libraries available for you to use in your end-user applications
after you have Thunder running.

Java

The Thunder Java client is available on Maven Central [https://search.maven.org/search?q=g:%22com.sanctionco.thunder%22%20AND%20a:%22client%22].
To add the client to your Gradle, Maven, sbt, or Leiningen project, follow the instructions given at that link.
For Maven, you can also read the following instructions.

Maven

Add the Thunder client artifact. The client artifact includes the api artifact, so there is no need to add both.

<dependency>
 <groupId>com.sanctionco.thunder</groupId>
 <artifactId>client</artifactId>
 <version>${thunder.version}</version>
</dependency>

To determine the latest version available, check out the
README [https://github.com/RohanNagar/thunder/blob/master/README.md], the
GitHub releases page [https://github.com/RohanNagar/thunder/releases], or the
Maven Central Search [https://search.maven.org/search?q=g:%22com.sanctionco.thunder%22%20AND%20a:%22client%22].

Usage

	Create a new ThunderClient instance with
	
	The endpoint to access Thunder over HTTP.

	Your application key/secret if using basic auth
OR your access token if using OAuth.

ThunderClient thunderClient = ThunderClient.builder()
 .endpoint("http://your.endpoint.com")
 .authentication("USER-KEY", "USER_SECRET") // Basic auth
 .authentication("ACCESS-TOKEN") // OAuth 2.0 access token
 .build();

Any of the methods in ThunderClient are now available for use. For example, to get a user:

User user = thunderClient
 .getUser("EMAIL", "PASSWORD")
 .get();

All of the ThunderClient methods return a CompletableFuture that will allow you to only block
on the response until you want to.

JavaScript (Node.js)

The official JavaScript Thunder client library is available on NPM.
See the repository [https://github.com/RohanNagar/thunder-client-js] for usage instructions.

 HTTP Routing Table

 /users |
 /verify

 		 	

 		
 /users	

 	
 	
 GET /users	

 	
 	
 POST /users	

 	
 	
 PUT /users	

 	
 	
 DELETE /users	

 		 	

 		
 /verify	

 	
 	
 GET /verify	

 	
 	
 GET /verify/success	

 	
 	
 POST /verify	

 	
 	
 POST /verify/reset	

Index

 nav.xhtml

 Table of Contents

 		
 Thunder Documentation

 		
 Features

 		
 REST API for user object operations

 		
 Multiple Database Providers

 		
 Email Verification

 		
 Server-Side Password Hashing

 		
 Secrets Fetching

 		
 Basic Authentication or OAuth 2.0

 		
 Additional User Properties

 		
 User 1

 		
 User 2

 		
 Customizable Email Contents

 		
 Customizable Verification Success Page

 		
 Generated OpenAPI (Swagger) Specifications

 		
 Official Docker Image

 		
 Client Libraries

 		
 Endpoints

 		
 Create User

 		
 Update User

 		
 Get User

 		
 Delete User

 		
 Send Verification Email

 		
 Verify User

 		
 Reset Verification Status

 		
 Get Verification Success Page

 		
 Configuration Options

 		
 Database

 		
 DynamoDB

 		
 In-Memory

 		
 MongoDB

 		
 Email

 		
 Message Options

 		
 Authentication

 		
 Configuration Secrets

 		
 AWS Secrets Manager

 		
 User Password Hashing

 		
 Property Validation

 		
 Email Address Validation

 		
 Operation Options

 		
 OpenAPI

 		
 Dropwizard Configuration

 		
 User Attributes

 		
 Exposed Attributes

 		
 Extra Attributes

 		
 HTTPS Support

 		
 Quick Start

 		
 Full Example

 		
 Step 1: Create a self signed root CA certificate

 		
 Step 2: Create a server certificate

 		
 Step 3: Sign the server certificate with the root CA certificate

 		
 Step 4: Convert server certificate and private key to PKCS#12 format

 		
 Step 5: Load the server certificate into the Java keystore

 		
 Step 6: Add fields to Dropwizard configuration file

 		
 Step 7: Load the root CA certificate into your local certificate store

 		
 Example certificate configuration files

 		
 Deployment

 		
 1. Create DynamoDB Table

 		
 2. Configure SES

 		
 3. Create a K8s Cluster

 		
 Azure Kubernetes Services (AKS)

 		
 4. Deploy Thunder

 		
 5. Add Domain Record (Optional)

 		
 Client Libraries

 		
 Java

 		
 Maven

 		
 Usage

 		
 JavaScript (Node.js)

_static/plus.png

_static/file.png

_static/minus.png

